If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+180x+360=0
a = 8; b = 180; c = +360;
Δ = b2-4ac
Δ = 1802-4·8·360
Δ = 20880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20880}=\sqrt{144*145}=\sqrt{144}*\sqrt{145}=12\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-12\sqrt{145}}{2*8}=\frac{-180-12\sqrt{145}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+12\sqrt{145}}{2*8}=\frac{-180+12\sqrt{145}}{16} $
| x+9x/20=7.25 | | x*2.5=12.5 | | 7(4y+4.5)=32.5 | | 21=0.75*a | | H=240-16t^2 | | 9x-12=2x-5 | | 2/3j=1/4+2/3-j/3 | | 16.2=5.36+4x | | 5x-1=4-6x | | 85=2x-17 | | 85=2x-7 | | 2x=5x-(x+10) | | 3^(2x+2)+27^(x+1)=3 | | -(m-4)=m+10 | | n/5+0.6=2 | | 7g-25=4g+52 | | 5x+9=21-2x | | Z=6x(5-2)+6 | | 18x2-39x+20=0 | | 25-5m=2m | | 8p=3p=25 | | 7x+4-2x=4 | | −6x−90=9x | | -7x+11=-12 | | 4-7=m(1-5) | | 6q-48=54 | | 2e+10=20 | | 3+3(2x+1)+x=11x+3 | | 8(4w+7)/5=2 | | -4(2t+10)=-16 | | 8-3x-1=3(2x+3)-8x | | 3x~2-11x-7=0 |